La microscopie optique

Nicolas Sandeau Maître de Conférences

A quoi ça sert?

Observer un objet, un phénomène...

avec une bonne **résolution spatiale** (voire temporelle) sans trop de perturbations (**innocuité**). L'instrument doit être **sensible** et la mesure (l'image) **contrastée**.

<u>Le plan</u>

- Les contrastes
- Les microscopies de fluorescence
- La microscopie confocale
- Augmenter la résolution
- Les microscopies non linéaires

Les 1^{er} microscopes

Microscope Carl Zeiss 1891

Vers 1880, des détails aussi petits que 0.2 µm sont déjà accessibles.

Principe du microscope

Principe du microscope

Les contrastes en microscopie

D'où vient le contraste?

Absorption, diffusion, réfraction, réflexion.

Variations d'intensité, de couleurs, de netteté

Microscopie sur fond noir

Fibers in Brightfield and Darkfield Illumination

http://micro.magnet.fsu.edu/primer/techniques/darkfieldgallery

http://prn1.univ-lemans.fr/prn1/siteheberge/PublisCours-OPI/OPI_fr_M03_C04/co/Contenu_K22.html

Contraste de phase

(Zernike prix Nobel 1953)

Contraste de phase

(Zernike prix Nobel 1953)

Image de la phase

Living Cells in Brightfield and Phase Contrast

Figure 2

http://www.microscopyu.com/articles/phasecontrast/phasemicroscopy.html

Microscope Image

Objective Rear Focal Plane

Microscope polarisant

Microscope polarisant

http://les.mineraux.free.fr/dossier-mineralo/lamemince/fiches/biotite.htm

Contraste par interférométrie

Image du relief

- Obj_{∞} : Objectif de microscope (corrigé à l'infini) à grande frontale
- LS : Lame semi-réfléchissante 50% avec compensatrice symétrique
- M : Miroir plan de référence
- Éch : Échantillon à observer

La présence du miroir induit une obturation centrale dans le système optique.

http://prn1.univ-lemans.fr/prn1/siteheberge/PublisCours-OPI/OPI_fr_M03_C04/co/Contenu42.html

Microphotographie de pistes (épaisses, ~0.5 μ m) d'aluminium sur un substrat plan de silicium. Objectif de Mirau 10</0,30 %/0,

Microscope DIC

"Differential Interference Contrast"

Image du gradient de la phase

 $\delta < \text{résolution}$ $I \propto 1 + \cos(\Delta \varphi)$ $\varphi_0)$ gradient de phase

Contraste de phase insensible aux pbs de polarisation \Rightarrow boite de Petri DIC utilisable avec des objectifs à forte NA \Rightarrow meilleur résolution http://www.microscopyu.com/galleries/dicphasecontrast/index.html

Contraste de fluorescence

https://www.omegafilters.com/curvo2/index.php?dyes=16&xmin=400

Intérêts de ce contraste

- Possibilité de filtrer simplement le faisceau d'excitation et ne détecter que l'émission
- Découplage de l'excitation et de l'émission
- Rendement de fluorescence
- Marquage spécifique

<u>Défauts</u>

- Photobleaching
- Toxicité

Particularités

- Temps de désexcitation
- Transfert d'énergie

Les luminophores

- Fluorophores exogènes intercalables, greffables (spécifique)...
- Protéines chimériques (GFP...);
- Billes fluorescentes (plus lumineux mais plus gros);
- Fluorophores endogènes (moins lumineux);

- Nanocristaux de semi-conducteur (plus lumineux, moins de photobleaching mais blinking! et pb de greffache et de phototoxicité.
- Nano-diamants (plus stables, plus lumineux...)

Contraste de fluorescence (spectral)

Contraste de fluorescence (temps de vie)

FLIM (Fluorescence Lifetime Imaging Microscopy)

Deux méthodes (Cf F. Sureau):

- Time domain
- Frequency domain

Permet de différencier 2 fluorophores qui ont même spectre d'émission

Images Sandrine Lévêque-Fort - Lab.de Photophysique Moléculaire

Contraste en microscopies cohérentes

• <u>Génération de Second Harmonique</u> (SHG) $\vec{P}^{2\omega} = \chi^{(2)} \vec{E}^{\omega} : \vec{E}^{\omega}$ \Rightarrow uniquement sur des matériaux non-centrosymétriques!

Artère de rein fibrotique Rouge:2PEF Vert: SHG=>collagène http://www.lob.polytechnique.fr

Stage 6

Génération de Troisième Harmonique (THG)

Image d'embryon de drosophile W. Supatto et al., PNAS (2005)

THG

ω

Les microscopies de fluorescence

Échantillons spatialement incohérents!

Deux modes d'imagerie :

Échantillons spatialement incohérents!

Deux modes d'imagerie : La profondeur de champ $d_z = \frac{n\lambda}{NA^2}$

Résolution vs Localisation

Résolution vs Grandissement

Résolution vs Grandissement

Attention à la taille du pixel!

Il faut adapter le grandissement à la taille du détecteur!

Mesure de l'orientation 3D

-100

-80

-60

-40

-20 -0

-12

-10

-8 -6 -4 -2 -0

20

Imagerie défocalisée

Imagerie défocalisée

Imagerie défocalisée

Figure 2. Measured defocused image of Cy5 molecules embedded in poly(vinyl alcohol) on glass near the air/polymer interface. Defocusing was achieved by moving the objective 1 μ m toward the sample.

- **A** D. Patra, I. Gregor, J. Enderlein, J. Phys. Chem. A **108** (33) p. 6836-6841 (2004)
- **B** E. Toprak et al., *PNAS* **103** (17) p. 6495-6499 (2006)

Les microscopies de fluorescence à balayage

Microscopie confocale de fluorescence

Main parameters

- of the microscope : **NA** and the ratio φ**/M**...
- of the excitation : mode, wavelength, polarization, shape of the beam...
- of the emission : wavelength...

3D-Resolution is defined by a **volumetric function** depending on the **excitation**, **emission** and **collection** parameters.

Volumes d'excitation (EEF)

Excitation Efficiency Function (EEF)

LASER

beam

Volumes de détection (DEF)

Detection Efficiency Function (DEF)

Augmenter la résolution?

Augmenter la résolution?

Augmenter la résolution des microscopes confocaux

Résolution axiale

TIRF microscopy

(Total Internal Reflection Fluorescence)

Evanescent Wave Exponential Intensity Decay

Résolution axiale

TIRF microscopy

(Total Internal Reflection Fluorescence)

http://micro.magnet.fsu.edu/primer/techniques/fluorescence/tirf/tirfconfiguration.html

Résolution axiale

Résolution axiale: le θ -microscope

Résolution axiale: 4π -microscopie

X (nm)

Résolution axiale: 4π -microscopie

X (nm)

Résolution axiale : 4π **-microscopie**

(c) Fibres d'actines

- (a) S. W. Hell, EP0491289 (24-06-1992)
- (b) C. J. R. Sheppard et al. *Optik* 87(3) (1991)
- (c) A. Egner et al. Trends in Cell Biology 15(4) 2005

CEF d'un 4\pi-microscope

CEF d'un 4π -microscope

Résolution axiale: le 4π -microscope

A. Egner et al. Trends in Cell Biology 15(4) 2005

4π -microscopie et excitation 2PE

100

EEF= Carte 3D du carré de l'intensité du faisceau pompe focalisé

Régime d'absorption à 2 photons

 λ_{pompe1} =488 nm λ_{pompe2} =2x488 nm λ_{fluo} =525 nm β =0.1 Polarisation selon X NA=1,3 n=1.518

Régime d'absorption à 80 · 1 photon 2 photons 60 -ΕEF 40 -20 -0 100 200 300 400 500 600 0 Z (nm)

 Φ =20 μ m m=40

4π -microscopie et excitation 2PE

EEF= Carte 3D du carré de l'intensité du faisceau pompe focalisé

Régime d'absorption à 2 photons

 λ_{pompe1} =488 nm λ_{pompe2} =2x488 nm λ_{fluo} =525 nm β =0.1 Polarisation selon X NA=1,3 n=1.518

100 EEF 2 photons 80 -CEF 4Pi-C EEF et CEF 60 -40 -20 -0 100 200 300 500 400 600 0 Z (nm)

 Φ =20 μ m m=40

4π -microscopie et excitation 2PE

Résolution latérale: le 4\pi

Résolution latérale: le 4π '

Résolution latérale: le 4π '

Z (nm)

Résolution 3D: le STED

Proc. Natl. Acad. Sci. USA 97(15): 8206-8210 (2000).

Principe des microscopies non linéaires et/ou cohérentes

Signaux non linéaires

W. R. Zipfel et al. Nature Biotech. 21 (2003)

Signaux non linéaires

exc 750nm, NA 1.2 V. E. Centonze et al. *Biophys. J.* **75** (1998)

Signaux non linéaires

Spectre 2PE sur tissu pulmonaire non marqué Excitation à 800 nm

Signaux non linéaires $I^{1PF} \propto N \sigma^{1PA} \Phi_F I^{\omega_1}$ $\mathrm{I}^{\mathrm{2PF}} \propto \mathrm{N} \,\, \sigma^{\mathrm{2PA}} \,\, \Phi_{\mathrm{F}} \,\, (\mathrm{I}^{\omega_2})^2$ ω_{2} avec $\sigma^{1\text{PA}} \approx 10^{-16} \text{ cm}^2 \omega_1$ avec $\sigma^{2\text{PA}} \approx 10^{-49} \text{ cm}^4 \text{.s.ph}^{-1}$ ω_f (U)_F ex : $\lambda_1 = 400 \text{ nm}$ ex : $\lambda_2 = 800 \text{ nm}$ ω_2 2PF 1PF **Avantages:** confocalité • pénétration dans les tissus (- de diffusion) • + grand écart entre excitation et émission Inconvénients: • sources à impulsions courtes (Prix, spectre...)

Signaux Cohérents

Microscopies cohérentes : ex la SHG

Microscopies cohérentes : ex la SHG

Microscopies cohérentes : ex la SHG

0 200 300 sides length (nm)